Abstract:
Cells of the dental papilla are capable of odontoblastic, fibroblastic, and endothelial differentiation and formation of dentin and the dental pulp. In the present study dental papilla cells, obtained from human tooth buds (HDP cells), were cultured in vitro through 3 to 7 passages. After exposure to prostaglandin E2 there was a marked decrease in intracellular cyclic AMP (cAMP) levels as compared to hormone-free controls. Parathyroid hormone and calcitonin had stimulatory effects with 1 and 2 log increases in cAMP, respectively. The HDP cells showed moderate activity of alkaline phosphatase, 1 log higher than that of hamster kidney fibroblasts (BHK 13) and 1 log lower than that of osteoblastic osteosarcoma cells (ROS 17/2). When cultured for 4 or 8 wk in diffusion chambers (DC) implanted in athymic mice, many of the HDP cells underwent odontoblastic morphodifferentiation with very long, single processes extending into the matrix. This matrix contained banded and unbanded collagen fibers. Neither light nor electron microscopy of the DC content revealed mineral deposits. These results suggest that HDP cells have an intrinsic potential for partial odontoblastic differentiation; inductive signals like those originating from odontogenic epithelium are probably essential for the completion of hard tissue formation.
Notes:
Shteyer, A Gazit, D Binderman, I Bab, I A eng Comparative Study 1987/01/01 In Vitro Cell Dev Biol. 1987 Jan;23(1):15-20.
Website